This calculator finds the volume of a parallelepiped in two modes: Rectangular (L × W × H) and Oblique (vectors a, b, c via |a · (b × c)|). A 3D diagram scales to your inputs so you can visualise your figure.

Parallelepiped Volume Calculator

Compute volume as L×W×H (rectangular) or |a·(b×c)| (oblique). Switch mode below.

3D visualization

Length (L)

Width (W)

Height (H)

Volume (V)

Calculation process will appear here.
Decimal Places
Share this?
WhatsApp X Telegram Facebook LinkedIn Reddit

Main features

  • Two modes matching the toggle: Rectangular and Oblique.
  • Configurable decimal places (default 2).
  • Copy result to clipboard.
  • Live 3D visualization with labeled axes/vectors.

How to use

  1. Switch the toggle to Rectang. or Oblique.
  2. Enter:
    • Rectang.: Length (L), Width (W), Height (H).
    • Oblique: a = (ax, ay, az), b = (bx, by, bz), c = (cx, cy, cz).
  3. Click Calculate. The result (V) and the diagram update.
  4. Optionally adjust decimal places or copy the result.

Units & inputs

Use any linear unit (m, cm, in, …). The output unit is cubic (m³, cm³, in³). Zero dimension or coplanar vectors produce V = 0 (degenerate).

Formulas

Rectang.: V = L × W × H.

Oblique: V = |a · (b × c)|, with b × c = (by·cz − bz·cy, bz·cx − bx·cz, bx·cy − by·cx) and a · (b × c) = ax(b×c)x + ay(b×c)y + az(b×c)z.

Determinant form: V = | det([a b c]) | = | ax   bx   cx |, | ay   by   cy |, | az   bz   cz |.

Sources: Wolfram Mathworld, Wiki.

Parallelepiped Volume Calculator Online

Reference values — Rectang. (examples)

LWHV
1111
21.50.51.5
321.59
41.22.311.04
50.80.41.6
2.52.52.515.625
63118
7.520.7511.25
101.20.67.2
0.50.530.75
84264
3.31.12.27.986

Reference values — Oblique (examples)

abcV = |a·(b×c)|
(1, 0, 0)(0, 1, 0)(0, 0, 1)1
(2, 0, 0)(0, 3, 0)(0, 0, 1.5)9
(1, 2, 0)(0, 1, 1)(1, 0, 1)3
(2, 1, 1)(1, 3, 0)(0, 2, 4)22
(3, −1, 0.5)(0.5, 2, 1)(1, 0, 2)11
(1, 1, 1)(1, 2, 3)(2, 1, 0)0
(4, 0, 0)(1, 1, 0)(0, 1, 1)4
(0, 2, 1)(1, 0, 2)(2, 1, 0)9
(2.5, 0, 0)(0, 2.5, 0)(0, 0, 2.5)15.625
(1, 1, 0)(2, 2, 0)(0, 0, 5)0

Notes that matter

  • The sign of a·(b×c) is orientation; volume uses |·|.
  • a, b, c coplanar ⇒ V = 0 (linearly dependent).
  • V² equals det(Gram(a,b,c)).
  • Rectang. is the special case a ⟂ b ⟂ c with |a|=L, |b|=W, |c|=H.
  • Swapping any two vectors flips the triple-product sign, not |V|.

CalcuLife.com